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Abstract. This paper introduces JNET, a novel constraint representation and
reasoning framework that supports procedural constraints andconstraint attach-
ments, providing a flexible way of integrating the constraint reasoner with a run-
time software environment. Attachments in JNET are constraints over arbitrary
Java objects, which are defined using Java code, at runtime, with no changes to
the JNET source code.

1 Introduction

Constraint-based reasoning has been shown to be useful in representing and reasoning
about such diverse problems as thegraph-coloring problem[10], thesatisfiability prob-
lem [5], the scene labeling problem[19], and theresource allocation problem[20]. In
theory, the problem in hand is formalized as a constraint satisfaction problem (CSP) and
is solved by using CSP algorithms such as backtracking. In practice, a few constraint
systems [1,2,18] have been developed and used as tools for implementing industrial
applications. A typical constraint system consists of a search engine and a constraint
library containing domain-independent constraints, such asall different, sum, cardinal-
ity, etc. A well-recognized limitation of applying such constraint reasoning tools is that
many real-world applications often involve constraints that may not be modeled with
built-in constraints in the constraint library. Those domain-specific constraints have to
be implemented and added to the constraint library, and in certain circumstances, the
underlying constraint search engine has to be tailored to deal with these specific con-
straints. Even if a constraint reasoning tool allows such extension and modification, it
is a great burden for the user of a constraint-reasoning tool to extend the tool itself.

In some other real-world applications, for example, the application of constraint-
based planning to processing earth-observing satellite data [6,8], where the constraints
involved are arbitrarily complex and dynamic, extending the constraint library may
not be feasible. We are applying constraint-based planning to the Earth-science data-
processing domain. This is a domain in which constraints may arise among complex
objects, such as satellite images and weather forecast data. Because the world is large
and dynamic, it is impossible to enumerate in advance all possible objects, such as satel-
lite images, much less provide an extensional representation of the constraints among
them. Moreover, many of the constraints we would like to use are very complex, but
are implemented as executable code in a software environment. Reimplementing them
in our constraint reasoning system would not only be difficult, but would also violate



the principle that information should exist in only one place. For example, objects in
the Earth Science Data Processing domain includes “tiles” from Earth-orbiting satel-
lites. A tile is a rectangular satellite image in some specified projection covering some
definite region of the Earth. A tile has a number of attributes, including the projection,
the instrument used to capture the image, the time and location where the image was
captured, the pathname where the image is stored and a unique identifier that can be
used to reference the tile. The pathname and unique identifier both depend on other at-
tributes of the tile, but the specific rules used to generate these are complex and subject
to change over time. For example, the pathname of the tiles depends on what disk is
used to store them. Encoding these rules directly in the constraint system would lead to
“bit rot,” i.e., causing the planner to stop working whenever details of the rules change.
Instead, we should simply invoke the operations provided by the software environment.

We would like to integrate the constraint reasoning system with the runtime soft-
ware environment so that the operations provided by the environment can be used as
constraints. We would like the constraint network to “query” the environment, to dy-
namically determine what objects exist and what attributes or properties those objects
have. Doing so requires being able to define types in the constraint network that corre-
spond to entities within the runtime environment and to define constraints in terms of
operations supported by the runtime environment.

The procedural contraint reasoning framework introduced in [11] and extended in
[12] comes close to providing the capabilities we need. Constraints can be defined in
terms of procedures, which can be implemented as arbitrary (C++) code. Such code
could be used to make calls to the external software environment. However, there are a
few disadvantages to this framework.

– Variables cannot have values that are objects in the environment. Only variables
from a predefined set of basic types provided by the constraint network can be
defined. This is very limiting if we want to define constraints that relate objects in
the environment.

– Procedural constraints are implemented as classes in the constraint network pack-
age, and must be defined according to the data structures for variables, values and
domains that are used by the constraint network. This requires anyone who writes
constraints to be fairly knowledgeable about the inner workings of the constraint
network. It also requires access to the source code of the constraint network and
recompilation of the source code when constraints are updated.

– The amount of code needed to write a procedural constraint is large compared to
the roughly one line of code needed to invoke a typical operation in a software
environment.

We have implemented a hybrid constraint reasoning system, called JNET, for Java con-
straint NETwork, which builds upon the constraint network described in [12] and ad-
dresses the above concerns. JNET provides

– Arbitrary, complex types, defined at runtime, corresponding to Java classes. Any
object in the Java runtime environment can appear as a value in a variable domain.

– Arbitrary, complex constraints, defined at runtime usingconstraint attachments,
constraints specification in terms of functional Java methods, which are concise



and simple to specify constraints without any knowledge of the workings of JNET.
However, they interact well with the JNET propagation algorithm.

– A library of common constraints.
– Interaction with the runtime environment: many of the constraints we would like to

represent, such as constraints involving files, images, etc., involve arbitrary objects
internal to the runtime environment, and the constraints themselves may be impos-
sible to define except by reference to operations provided by the environment.

– Open-world scenarios: given the large number of files available in data-processing
environments, it is infeasible to explicitly enumerate in advance all of the objects
in the universe and the relations among them. Instead, we query the environment
for those objects relevant to a particular planning problem. We can do this nat-
urally and flexibly using constraint reasoning, by representing these “queries” as
constraints. Open worlds can be divided into two cases: unknown variables and un-
known domains. Unknown variables can dealt with by adding variables within a
dynamic CSP. Unknown values can be dealt with beginning with open domains for
some variables and allowing sensors to serve as constraints, restricting the domains
as information is acquired.

– Dynamic CSPs: The framework can handle the addition and deletion of variables,
values and constraints

The remainder of the paper is organized as follows: In Section 2, we look at an example
of a planning problem in the data processing domain that motivates the need for a hybrid
constraint-reasoning framework. In Section 3, we discuss the constraint framework. In
Section 4, we then discuss in more detail the constraints specific to the data-processing
domain and how they are represented in our framework. In Section 5, we discuss the
implemented constraint system. In Section 6, we conclude by summarizing our contri-
bution and discussing the limitations and future work.

2 Planning as Constraint Reasoning

Earth-science data processing is the problem of transforming low-level observations
of the Earth system, such as data from Earth-observing satellites and ground weather
stations, into high-level observations or predictions, such as “crop failure” or “high fire
risk.” Given the large number of socially and economically important variables that
can be derived from these data, the complexity of the data processing needed to derive
them and the many terabytes of data that must be processed each day, there are great
challenges and opportunities in processing the data in a timely manner, and a need
for more effective automation. Our approach to providing this automation is to cast it
as a planing problem: we represent data-processing operations as planner actions and
desired data products as planner goals, and use a planner to generate data-flow programs
that produce the requested data.

Constraints arise naturally in this planning problem. Specifications of data inputs
and outputs include constraints indicating geographic regions of interest, thresholds on
resolution, data quality, file size, etc. Specifications of data-processing operations in-
clude constraints relating the inputs of the operations to the outputs. For example, scal-



ing an image creates a new image whose dimensions are some multiple of the dimen-
sions of the original. In the course of planning, additional constraints arise specifying
how parameters of an action depend on the parameters of other action in the plan.

We are working with Earth scientists to provide planner-based automation to an
ecosystem forecasting system called the Terrestrial Observation and Prediction System,
or TOPS [17] (http://www.forestry.umt.edu/ntsg/Projects/TOPS/). We have developed a
planner-based softbot (software robot), called IMAGEbot [8], to generate and execute
data-flow programs (plans) in response to data requests. The data processing opera-
tions supported by IMAGEbot include image processing, text processing, managing
file archives and running scientific models.

The architecture of IMAGEbot is described in Figure 1. Planning domains are
loaded by the parser and passed to the planner. The planning domains include defi-
nitions of actions, as well as complex types, functions and relations, which can, in turn,
be defined in terms of named constraints from a constraint library or constraint attach-
ments, specified using Java code. Given these definitions, goals from a user and an
“initial state” specification from a database or a file loaded by the parser, the planner
converts the planning problem into a dynamic CSP (DCSP), which it gives to JNET to
solve. The planner controls the high-level search, guided by heuristics derived from a
Graphplan-style [4] reachability analysis. During planning, information from the envi-
ronment comes to the planner via JNET in the form of variables whose values are de-
termined by constraint attachments. When new objects are discovered that correspond
to complex types, the planner may introduce additional variables and constraints to the
DCSP to reason about these objects in JNET. The planner may also add variables and
constraints to the DCSP in response to search failure or execution failure. A solution
to the DCSP corresponds to a solution to the planning problem. The planner sends ex-
ecutable plans or sub-plans to the executive, which may return information that is fed
back into (re)planning and constraint reasoning.
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Fig. 1.The agent architecture



3 Procedural Reasoning Framework

The planning problem discussed above is reformulated in the IMAGEbot Planner as a
constraint satisfaction problem (CSP) that is handled by the constraint reasoning sub-
system called JNET. In this section, we present the basic idea behind JNET, namely, the
constraint proceduresandconstraint attachments.

3.1 Constraint SatisfactionProblems

A Constraint Satisfaction Problem (CSP)is a representation and reasoning frame-
work consisting of variables, domains, and constraints. Formally, it can be defined
as a triple< X,D,C > where X = {x1,x2, . . . ,xn} is a finite set of variables,D =
{d(x1),d(x2), . . . ,d(xn)} is a set of domains containing values the variables may take,
andC = {C1,C2, . . . ,Cm} is a set of constraints. Each constraintCi is defined as a rela-
tion Ron a subset of variablesV = {xi ,x j , . . . ,xk}, called the constraint scope.Rmay be
represented extensionally as a subset of Cartesian productd(xi)×d(x j)× . . .×d(xk).
A constraintCi = (Vi ,Ri) limits the values the variables inV can take simultaneously
to those assignments that satisfyR. The central reasoning task (or the task of solving a
CSP) is to find one or more solutions.

Many algorithms and systems have been developed for solving constraint problems,
ranging form simple backtracking search algorithms to sophisticated hybrid methods.
However, constraints involved in real-world applications, such as the data-processing
domain discussed in previous sections, represent new challenges as to how to represent
these constraints and to find solutions to the constraint problems. In the following, we
present our constraint representation and reasoning framework.

3.2 Constraint Procedures

The idea of procedural reasoning in constraint satisfaction [11] is to augment a gen-
eral constraint search engine with specific procedural methods that can quickly solve
certain types of subproblems and prune a search space that contains no potential so-
lutions. In certain sense, similar techniques have been widely used in solving binary
CSPs; that is, enforcing arc-consistency while searching for solutions by backtracking
[16]. A binary constraint is arc-consistent if for each value of one constrained variable
there exists a value of the other constrained variable such that the value pair satisfies
the constraint. To enforce arc-consistency, we eliminate those values from a variable
domain for which there is no corresponding value in the other variable domain satisfy-
ing the constraint. Such values are usually called inconsistent values. There have been
many algorithms published in the literature [15,13,14,3] for enforcing arc-consistency,
but the question of how to detect and then remove inconsistent values has largely been
ignored, because it seems to be a trivial implementation issue when dealing with bi-
nary constraints, which can be uniformly represented as a 0-1 matrix (assuming finite
domains). However, when it comes to non-binary constraints, enforcing a local con-
sistency relative to a constraint is not obviously a trivial task. Instead, constraints in
different application domains are represented and enforced in different ways. In ad-
dition, many constraint satisfaction problems contain simple functional relations (e.g.



arithmetic equations) and simple subproblems (e.g. linear equations with unknowns)
that can be solved quickly by using existing algorithms. The question becomes 1) how
to uniformly represent constraints that arise in different applications; 2) how to take
advantage of such algorithms in order to significantly improve search efficiency. The
procedure reasoning framework, which has been formalized in the context of constraint
satisfaction [11], addresses this question.

In general, the notion of a constraint procedure encompasses a wide range of con-
straint reasoning techniques, from simple propagation to complete search methods:

A constraint procedurep is a function that maps a CSPIP = (X,D,C) to another
CSPIP′ = (X,D′,C′) such that: 1)d(xi)⊆ d′(xi) for eachxi ∈ X, d(xi) ∈D, d′(xi) ∈D′;
2) for each constraintCh = (Vh,Rh) ∈ C there exists a constraintC′h = (Vh,R′h) ∈ C′,
such thatCh andC′h have the same scope andR′h⊆ Rh.

A constraint procedurep is correct if the set of solutions toIP′ is the same set of
solutions toIP. This definition permits a constraint procedure to eliminate values from
variable domains, restrict existing constraints, and add new constraints. The correctness
criterion ensures that these operations defined in a procedure applied to a CSP only
transforms the CSP to an equivalent one; that is, the set of solutions to the CSP will not
be affected.

The concept of constraint procedures provides a uniform and efficient method to
represent and reason with constraints. In terms of representation, constraint procedures
can be used to specify any kind of constraints over any kind of variables. In fact, by
the CSP definition in Section, a constraint on a subset of variables can be seen as a
function that maps a universal relation on the variable subset into a restricted relation
on the same variables defined by the constraint. From the reasoning point of view, con-
straint procedures can be applied for the purpose of both maintaining consistency and
searching for a solution. Given a constraintCi = (Xi ,Ri) whereXi = {xi1,xi2, . . . ,xim}
andRi ∈ d(xi1)×d(xi2)× . . .×d(xim), executing the procedure representing the con-
straint eliminates those values from variable domains that won’t be in any tuple inRi ;
in particular, for any tuple assigned to the variable subset, enforcing the constraint en-
sures it is a consistent partial assignment. When interleaving the execution of constraint
procedures with a search algorithm such as standard backtracking, it dramatically in-
creases efficiency of solving the constraint problem. This is so because many variables
will be assigned a value by the constraint procedures instead of by the search engine.

3.3 Constraint Attachments

A constraint essentially specifies a relationship among constrained variables that should
be maintained, for example,x+y = z is a constraint describing an equality relation that
holds among three numeric variablesx, y, andz. As discussed previously, a procedu-
ral representation of this equality constraint is a constraint procedure maintaining the
equality relation; that is, whenever the domain ofx, y, or z changes, the constraint pro-
cedure will be executed to detect and eliminate inconsistent values from the domains
of other variables. In particular, when the domains of these variables become singleton,
that is, the variables have been assigned a single value, the constraint procedure ensures
that the equality relation holds. A constraint attachment is an alternative formalism for
representing a underlying constraint. It can be considered a special case of a constraint



procedure in that the attachment consists of a set of functional methods, which collec-
tively define the relation. Each method takes a list of arguments as input variables and
it returns the calculated result for its output variable, such that the underlying constraint
is still satisfied. For example, the constraintx+ y = z would, in general, include three
methods:z← x+ y, x← z− y, andy← z− x. The methodz← x+ y calculatesz’s
domain based on the domains of the given variablesx andy, and it is usually invoked
when either or both domains ofx andy changes.

The idea of constraint attachment can be traced back toprocedure attachmentin [9],
and it has been noted in [11] that such an approach in constraint satisfaction has certain
shortcomings in terms of reusability, global algorithm implementation, and integration
with search engines. The JNET framework addresses these concerns. A constraint at-
tachment is a special constraint procedure in that the procedure consists of a set of func-
tional methods, therefore, it works with any search engines for which a constraint pro-
cedure works. Furthermore, we don’t need constraint attachments for implementing any
algorithms or constraints that can be implemented with general constraint procedures.
In other words, global algorithms and any reusable constraints can be implemented as
constraint procedures.

As we will discuss in Section 5, constraint procedures are usually implemented to
approximately enforce generalized arc consistency for more efficient execution. Con-
straint attachment has certain advantageous over general constraint procedures in terms
of flexibility. Given a constraint attachment, not only can a set of functional methods be
selectively implemented, but also the implemented methods can be selectively executed
by a constraint propagator or a constraint solver without any tailoring of the propaga-
tor and the solver to the specific constraints. This selective execution can exploit the
knowledge of what variable domain a given method will affect and what variable do-
mains that method depends on. Most importantly, by combining constraint attachments
and constraint procedures, we have a hybrid constraint representation and reasoning
mechanism that significantly improves applicability of constraint systems and also al-
lows constraint systems to interact with a dynamic runtime environment.

Since the focus of this paper is constraint attachments in JNET, we now discuss how
attachments are defined in domain descriptions, how they are used by JNET, and how
execution of the attachments is used to communicate with the software environment.

4 Domain Specific Constraints

Domain descriptions are specified in a language called the Data Processing Action De-
scription Language (DPADL) [7], which allows the description of planning domains
that involve data processing operations as well as the constraints appearing in those do-
mains. We limit the discussion of DPADL syntax to that needed to show how constraints
are defined.

We provide two alternative ways of specifying the definition of a constraint; it may
be selected from the built-in JNET constraint library if such a constraint is defined, or
it may be defined in terms of arbitrary Java code embedded in the type, attribute and
function declarations if such a constraint does not exist in the constraint library. The



constraint network supports constraints over all primitive types as well as Java objects.
It can also handle constraints involving universal quantification, as discussed in [6].

4.1 Types

DPADL is an object-oriented language modeled on Java, so it supports complex types,
which may (but need not) correspond to Java classes. When types do correspond to Java
classes, attachments are used to define constraints on those objects. Complex types may
have multiple attributes (i.e., fields or members), which may themselves be instances of
complex types. We will not discuss the details of this representation because, at the level
of constraint reasoning, it doesn’t really matter. We can describe a complex type using a
set of relations that relate an instance of the type to each of its attributes, so ultimately,
all we have is variables, values and relations. What does matter is that the types of
variables may be Java classes, the values may be Java objects, and the relations may be
defined using Java methods. In addition to complex types, we can also have primitive
types, corresponding to integers, floating point numbers, strings and booleans, and we
may define subtypes any type, which may, but need not, be represented extensionally.
For example, we may define the typeimageFormat as the set {“JPG”, “GIF”, “PNG”,
“TIFF”, “HDF”, “XCF”}.

Constraints may be defined for any type. Constraints associated with primitive types
are unary, but constraints associate with complex types can refer to attributes of the
type as well as the instance of the type itself. Constraints associated with a type will be
instantiated for each variable of that type in the constraint network.

For example, suppose we want to specify a filename as a subtype of string. JNET
supports extensive capabilities for representing and reasoning about string constraints
using a domain representation based on regular languages. The most fundamental string
constraint is the unarymatches constraint, which specifies that the string matches a
given (constant) regular expression. Thus, we can say that all filenames satisfy the con-
straint

matches(this , "~[/]")

which specifies that filenames must contain at least one character, and they cannot con-
tain the character ‘/’. In Unix, this is, in fact, the only practical limitation on filenames.
The keywordthis is a special variable that refers to an instance of the type being
defined, so if the above constraint appears in the type definition forfilename, then all
variables of typefilename will have that constraint.

In addition to constraints from the library, we can define constraints using attach-
ments, as we discuss below.

4.2 Attributes, Functions and Relations

DPADL is a functional language, so relations and attributes are ultimately represented
as functions. This is not an important distinction, but since we refer to relations in a
different sense in our definition of constraints, we will refer to attributes, functions
and relations declared in domain descriptions collectively asfunctions. Functions lead



a double life in DPADL. Because not all aspects of planning problems require con-
straints, we can declare functions that do not correspond to constraints. Subgoals con-
taining these functions are handled by the planner, via unification and goal regression.
They may ultimately appear asvariables in the constraint network generated by the
planner, but never as constraints. On the other hand, some functions, such as arithmetic
expressions, clearly are best represented as constraints. We do this by specifying one
or more constraints thatdefinethe function. If any function has a constraint definition,
the planner does not attempt to deal with it, but adds the corresponding constraints to
JNET. Like constraints associated with types, constraints associated with functions can
be specified using either the constraint library or attachments

4.3 Constraint Attachments in Data Processing Domain

To specify a constraint attachment that can be used by JNET, we must specify the set of
variables involved in the constraint and the method (the actual code) used to implement
the constraint. Formally, an attachment is a pair< P,m>, whereP is asignatureandm
is amethod. Conceptually,P specifies the arguments and return values of the methodm
as a list, {a0,a1, . . .an}, where the first argument,a0 designates the variable that will be
assigned the return value ofm anda1, . . . ,an designate the variables that will provide
the arguments tom. The argumentsai are not just variables, however. If we were only
interested in implementing attachments that took singletons as arguments and returned
singletons as results, then all we would need forP would be a list of variables. Instead,
we allow the domain modeler to specify that an argument represents an entire domain,
which may be in the form of a finite set or an interval. Thus, in addition to the variable,
it is also necessary to specify what form the domain should take: a singleton, set or
interval. Each argumentai , then, is a pair< ti ,xi >, wherexi is a variable from the
constraint network andti specifies the form that the the domain ofxi should take. For
method arguments (ai , wherei > 0), ti ∈{1, ℑ, S }, where 1 is used to denote a singleton,
ℑ denotes an interval, andS denotes a finite set. The methodm will only be applicable
if each of the domainsd(xi) can be converted to the representationti required bym. The
possible values fort0 are slightly different. Methods can return single values or sets, but
not intervals; instead, two methods are specified, one to compute the lower bound of an
interval and the other to compute the upper bound. Thus,t0 ∈{1, bℑc, dℑe, S }, where
bℑc anddℑedenote the lower and upper bound of an interval, respectively.

Syntax Constraint attachments are specified in domain descriptions using a concise
syntax that we will explain by example. A formal specification of DPADL syntax can be
found in [7]. For example, the TOPS environment provides a classtops.modis.Tile
to represent tiles from the MODIS instrument aboard the Terra and Aqua satellites. This
class contains various methods, such as getUID, to provide information about tiles. We
can specify attachments that define theuniqueId of a tile by reference to the methods
provided by the environment that relate to unique identifiers:

value (this ) = $this .getUID()$;
this (value ) = $Tile.findTile(value )$;



There is a one-to-one mapping between tiles and their unique identifiers. Given a tile,
we should be able to obtain its unique identifier, and given a unique identifier, we should
be able to obtain the corresponding tile. The embedded Java code provides instructions
for performing these mappings. TheuniqueId attribute of aTile can be determined
by calling thegetUID method on theTile, and aTile object corresponding to a given
uniqueId can be determined by calling the methodfindTile, with theuniqueId as an
argument. Each line above is an attachment. The text preceding the “=” is the signature
P, written in the formx0(x1, . . . ,xn), and the following code, delimited by “$. . .$,” is the
methodm. As discussed above, the variablethis refers to an object of the type being
defined. In this case, the definition of theuniqueId attribute appears in the definition
of theTile type, sothis is an object of typeTile. The keywordvalue is a variable
that identifies the return value of the function being defined, in this caseuniqueId.
Thus, the signaturevalue (this ) means that the method accepts an argument of
type Tile and returns the value of theuniqueId attribute of thatTile. Conversely,
this (value ) means that the method expects a String representing theuniqueId and
returns the correspondingTile.

The two attachments used to define the constraint foruniqueId can be written as:

1. <{<xuid,1>, <xtile,1>}, m1>
2. <{<xtile,1>, <xuid,1>}, m2>

where the methodsm1 andm2 are the Java methods generated from the attachment def-
inition; m1 is a method that takes aTile and returns aString, andm2is a method that
takes aString and returns aTile. The value 1 fort1 means that a value forxuid can
only be obtained ifxtile is singleton, and vice versa. It is also possible to define con-
straints that work for non-singleton domains, by indicating that an argument or return
value represents an intervalℑ (delimited by[] in the DPADL code) or a finite setS
(delimited by{}). For example, one attribute of aTile is that itcovers a given longi-
tude, latitude. Given a particular longitude and latitude, the constraint solver can invoke
a method to find a single tile that covers it, but it can do even better. Given a rectangular
region, represented by intervals of longitude and latitude, it can invoke a method to find
a set of tiles covering that region.

/**
* true if this tile covers the specified lon/lat.
*/

boolean covers(float lon, float lat) {
constraint {

. . .
// returns the set of tiles covering given range.
{this }([lon], [lat], d=day, y=year, p=product, value )
= {$ if (value)

return tm.getTiles(lon.max, lat.min, lon.min,

lat.max, d, y, p);
else return null ; $};



}
}

In this example, the signature is more complicated. The use of {} aroundthis indi-
cates that the return value of the Java code is a set — specifically, a set of tiles, since the
variablethis indicates an instance of the typeTile. The first two arguments, lon and
lat, are surrounded by[. . .], indicating that the variable domains should be intervals.
The next three arguments,d, y, andp are defined as being equal to theTile attributes
day, year andproduct, not shown in this example. Finally,value is the boolean
value of thecovers relation, true if and only if the tile covers the specified lon/lat.

The Java code is also more complex. Unlike the previous example, it has a con-
ditional and an explicit return call. Ifvalue is true, then it returns the result of the
method getTiles. Since lon and lat are intervals, we refer to their maximum and mini-
mum values to specify the bounding box of interest. Ifvalue is false, it returnsnull ,
meaning the set of tiles could not be determined, since there is no method for returning
the tiles outside of a bounding box.

In this example,P={<xtile,S>, <xlon,ℑ>, <xlat ,ℑ>, <xd,1>, <xy,1>, <xp,1>, <xcovers,1>}
andm is a method that returns a Collection of Tile objects.

We can also specify attachments that calculate interval domains. We do this by
specifying two attachments, one for the minimum value of the interval and one for the
maximum value. For example, the type Date is represented as the number of millisec-
onds since an epoch, as specified by the class java.util.Date. If the domain of a Date
variable is represented as an interval, then we can compute an interval representation
of the year by determining the year of the minimum date and the year of the maximum
date.

int year {
constraint {

[value ]([this ]) :=
[$ cal.setTime(new Date(this.min));

return cal.get(cal.YEAR); $,
$ cal.setTime(new Date(this.max));

return cal.get(cal.YEAR); $];
}

}

Here, there are two attachments specifying the domain of the year attribute of Date

1. < P1,m1 >,whereP1 ={<xyear,bℑc>, <xdate,ℑ>}
2. < P2,m2 >, whereP2 ={<xyear,dℑe>, <xdate,ℑ>}

Implementation Details The parser generates attachments from their DPADL spec-
ification by generating Java methods from the in-lined code (delimited by $. . .$) that
appears in attachment definitions, together with the signature, from which the method’s
parameter list and return type can be determined. The parser then compiles and loads
the generated Java code, and uses reflection to obtain references to the newly defined



methods from their names. This last part points to an advantage of Java over, say, C
or C++, which does not support reflection. Implementing run-time attachments in C
would not be impossible, but it would be considerably more difficult. Lisp, and a few
other high-level interpreted languages, would also be a suitable language for imple-
menting attachments. For our purposes, Java has the unique advantage that the runtime
environment we want to interface with is written in Java.

This approach enables constraint attachments to be defined at runtime, without re-
quiring modification to, or even access to, the source code of the constraint network.
In contrast, constraint procedures [11] are implemented as classes in the constraint net-
work package; adding a new procedural constraint involves modifying and recompiling
the constraint network source code. Although the values passed to the methodm cor-
respond to variable domains, the code that implementsm is entirely independent of the
implementation of the constraint network and the representation of variable domains.

1. If the specified domain type is 1, the argument passed to the method is simply the
one value in the domain, which is either a primitive (int, boolean, etc.) or a Java
object. The declared type of the corresponding parameter is simply that type.

2. If the specified domain type isS , then the argument is an instance of java.util.Collection,
where the members are either wrappers for the primitive types (Integer, Boolean,
etc.) or Java objects corresponding to the declared object type.

3. If the specified domain type isℑ, the argument is an object that has two attributes,
min and max, of type int or float, depending on the declared type of the variable.
The user need not know anything else about the object.

Similarly, the return value for singletons is just the singleton value of the variable, and
the return value for sets is a Collection. For intervals, two attachments are provided, as
in the example of Date above: one to return the minimum value and one to return the
maximum value, and these return value are either ints or floats.

For example, the methodsm1 andm2 in the attachments foruniqueId are simply:

1. String m1(Tile x){return x.getUID();}
2. Tile m2(Stringx){return Tile.findTile(x);}

4.4 Requirements

Because attachments are used to define constraints, the attachments associated with a
given type, attribute or function should collectively define the corresponding relation.
Thus, there are certain requirements that the code is assumed to meet:

1. The code may not do anything other than calculate the domain of a variable and
return it. That is, it may not have any side-effects.

2. If the code is called multiple times with the same arguments (which represent do-
mains a subset of the of variables), it will always return the same value (which
represents the calculated domain of another variable).

3. If the domains corresponding to one or more of the arguments is reduced, then the
calculated domain will be a subset of the original domain.



If these requirements are not met, then the results are undefined.
Note that requirement 1 precludes the possibility of implementing stronger consis-

tency enforcement than arc consistency, since there is no way to add a derived con-
straint. That is really a consequence of our decoupling the specification of constraint
attachments from the implementation of the constraint network. Since JNET also sup-
ports procedural constraints, it is still possible to implement higher-order consistency,
just not using attachments. Otherwise, these requirements are not very strong. We do
not require that the definition of the constraint provide access to the full extension of the
relation.3 For example, we could have a binary constraint defined by only one attach-
ment, and thus constraining only one variable. If the other variable is specified, then the
value(s) for the constrained variable will be determined, but not vice versa.

5 Constraint System Implementation

We ported the procedural reasoning framework of [12], to Java, and extended it to sup-
port string domains, quantified constraints [6], and other features, including constraint
attachments. In the following, we briefly describe resulting implemented system, called
Java Constraint Network (JNET). JNET is a component in the IMAGEbot planner, but
it can also be used a stand-alone constraint system with capacities of of solving a variety
of constraint problems.

JNET contains classes for variables, domains, and constraints. Each variable is as-
sociated with a domain. A variable domain can be finite or infinite, in which case it is
represented as an an interval (for numeric types), regular expression (for string types),
or symbolic set (for object types). The constraints are implemented as procedures or
constraint attachments. A constraint consists of a set of variables (the scope) and a pro-
cedure that enforces the underlying constraints on the variables. Enforcing a constraint
eliminates inconsistent values from the domains of variables in the scope; that is, when
the procedure is executed, it examines current domains and eliminates any values that
are not consistent with values remained in other domains.

In the current version, JNET provides a fairly rich set of variable types and con-
straint library. Variables can be boolean, numeric (integers and floating point), string,
and any Java objects. The implemented constraint library contains about thirty application-
independent constraints, such as equality, less-than, maximum and minimum, cardinal-
ity, regular expression match and string concatenation. Since it is expensive (in the
case of large finite domains) and even impossible (in the case of infinite domains) to
completely enforce the underlying constraint in the procedure, many of the procedures
only approximately enforce the constraint, based on an idea of maintaining generalized
arc-consistency. Any procedural constraint fully enforces the constraint whenever each
domain in the scopes has been reduced to a singleton. However, many constraints im-
plemented and included in the constraint library can do much more to eliminate invalid
values from variable domains without eliminating potential solutions.

3 Except in the trivial sense that any particular assignment of values to the variables will either
be consistent or it will not; if the assignment is inconsistent, then some attachment will return
a domain for a variable that does not contain the assigned value for that variable.



Constraint attachment is implemented as a special procedure calling attached func-
tional methods. This procedure is, in fact, a procedural constraint, used to represent all
possible constraint attachments. When a set of attachments defining a new constraint
is encountered, a new instance of theattach constraint is created, containing a list of
all attachments associated with the constraint. Each attachment is of the form< P,m>,
whereP is the signature andm is the Java method as defined previously. Although, in
our planner,m is generated by the IMAGEbot parser from the planning domain speci-
fication, it could be defined in any way, such as being implemented directly by the user
with Java.

The search engine of the constraint system contains several search algorithms in-
cluding depth-first search, backjumping and conflict-directed backjumping. A simple
depth-first search is outlined as follows:

DFS(searchableVars)

1. if searchableVars is empty, return success ;
2. select xi ∈searchableVars;
3. for each value v∈ d(xi)

(a) assign xi = v;
(b) if (propagate({x_i}) and DFS(searchableVars - xi)) return success ;

4. return failure ;

The setsearchableVars contains all unassigned variables with finite domains contain-
ing more than one value. If a variable domain becomes a singleton during propagation,
it is considered to have a value assignment. Therefore, propagation, together with pro-
cedures in each constraints, plays important role in the solution search process.

Propagation, as performed by the procedurepropagate(), is a process of continu-
ously executing constraint procedures as long as a variable domain changes. If propa-
gation results in an empty variable domain,propagate() returnsfailure. Otherwise,
it returnssuccess. Given a set of variablesV affected by either search or propagation,
a simple propagation algorithm works as follows:

propagate(affectedVars) while affectedVars is not empty do

1. x← a variable removed from affectedVars;
2. Cx← a set of constraints containing x;
3. for each constraint c∈Cx

(a) if execute(c) success, add affected variables to affectedVars
(b) else return failure;

4. return success ;

The correctness of the search algorithm outlined above is proved in [6], though its
completeness is only ensured for CSPs with finite set solutions.

The constraint execution procedure for constraint attachments is as follows:

execute(< P,m>)



1. for each < xi , ti >∈ P where i > 0

(a) if (d(xi) is not representable as the domain type designated by ti)
return

(b) else let di be the singleton, set or interval representation of
d(xi), where ti = 1,S ,ℑ, respectively.

2. let v0←invoke m(d1, . . . ,dn)

3. assign d(x0)← d(x0)∩


{v0} if t0 = 1
v0 if t0 = S
[v0,∞) if t0 = bℑc
(−∞,v0] if t0 = dℑe

Note that in 1(a), there is no requirement that the internal representation take the form of
a singleton, interval or set, merely that it is possible to represent the domain in this way.
For example, a single numeric value could be represented in any of the three forms.

6 Conclusion

We have described the JNET constraint reasoning system. JNET is implemented as a
component of the IMAGEbot planner-based agent and it provides the planner with con-
straint reasoning capabilities. As a constraint reasoning system, JNET can be applied
to solving constraint problems in other real-world application domains. To do so, the
user needs to define variables and their domains, and specify the constraints using the
predefined constraints in the constraint library. For modeling application-specific con-
straints that are not defined in the constraint library, JNET provides the user with two
alternatives:

1. Constraints can be implemented as reusable procedural constraints by extending
the constraint template provided in JNET;

2. Constraints can be implemented as a set of attached functional methods, which may
be defined at runtime, without modification to, or even access to, the JNET source
code.

JNET provides an easy way to integrate non-constraint-based services into a constraint-
based application; any Java classes can be used as types, and any methods provided by
those classes can be used to implement constraints. This capability is used in IMAGEbot
to integrate planning with sensing; “sensors” that return information about a software
environment, such as the locations of files, are implemented as constraint attachments;
as relevant variables become constrained, different sensors (in the form of attachments)
are activated, yielding additional constraints which may, in turn, activate other sensors.

Although any Java class can be used as a type, in our current implementation, not
all Javaprimitives are supported. Specifically, String, boolean, long and double are
supported, but other primitives, such as char and float, must be cast to long and double,
respectively. Although we consider this an acceptable compromise, in future work, we
will provide language-level support for primitive types, so the conversions are done
automatically.



There is one domain type supported by JNET that is not currently supported by
attachments: regular expressions. Infinite string domains in JNET are represented as
regular languages, so attachment methods that take string arguments are limited to sin-
gletons or finite sets. Given that many commands in software environments can take
regular expressions as arguments, providing the ability to specify attachments that ac-
cept regular expressions would be a natural extension, which we intend to add.
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